MATH/COSC 3416 EL 01 FINAL EXAM
NUMERICAL METHODS I
Practice Exam

Time Allowed: 3 hours
Instructor: Barry G. Adams

1. Answer ALL questions in the booklets supplied.
2. Any calculator is permitted.
3. Total marks: 60.

Question 1 (6 marks)

(a) [2 marks] Consider the two recurrence relations

\[y_{n+1} = \frac{1}{n+1} - \frac{n}{2}y_n, \quad y_0 = 1 \]
\[E_n = 1 - \frac{1}{n+1}E_{n-1}, \quad E_0 = 1 \]

For each recurrence relation indicate whether it is numerically stable or not and give reasons for your answers.

(b) [2 marks] Explain how accurate values of the function \(f(x) = \cos x - 1 \) can be computed near \(x = 0 \).

(c) [2 marks] Write a pseudo-code algorithm to show how the polynomial \(p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n \) can be efficiently calculated at a given value of \(x \).

Question 2 (6 marks)

(a) [2 marks] Newton’s method for finding a root of \(f(x) = 0 \) is based on the fixed point iteration formula

\[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \]

Derive this formula from the Taylor series expansion of \(f(x) \).

(b) [2 marks] Write Newton’s method for \(x^4 - 2x^2 + x - 3 = 0 \) and use it to find a root accurate to at least 4 significant figures starting with initial guess \(x_0 = 2.0 \).

(c) [2 marks] Apply 3 iterations of the bisection method to find the root of the equation \(x - \cos x = 0 \) that lies in the interval \([0.7, 0.8] \).
Question 3 (8 marks)

(a) [3 marks] Consider the following table of values for a function \(f(x) \) on the interval \([0, 3/2]\):

\[
\begin{align*}
 x_0 &= 0, \quad f(x_0) = 1/3 \\
 x_1 &= 1/2, \quad f(x_1) = 1 \\
 x_2 &= 1, \quad f(x_2) = 2 \\
 x_3 &= 3/2, \quad f(x_3) = 3
\end{align*}
\]

Write the degree 3 Lagrange interpolating polynomial for this table but do not simplify it.

(b) [3 marks] The entries in the Newton divided difference table are constructed using the formula

\[
F_{ij} = \frac{F_{i,j-1} - F_{i-1,j-1}}{x_i - x_{i-j}}.
\]

Complete the following Newton divided difference table that uses the values in Question 3(a)

\[
\begin{array}{cccc}
 x_0 &= 0 & F_{00} = 1/3 \\
 x_1 &= 1/2 & F_{10} = 1 & F_{11} = xxxx \\
 x_2 &= 1 & F_{20} = 2 & F_{21} = xxxx & F_{22} = xxxx \\
 x_3 &= 3/2 & F_{30} = 3 & F_{31} = xxxx & F_{32} = xxxx & F_{33} = xxxx \\
\end{array}
\]

(c) [2 marks] Using this table write the degree 3 interpolating polynomial in Newton form and evaluate it at \(x = 3/2 \)

Question 4 (4 marks)

Suppose a table is to be prepared for the function \(f(x) = e^{-x} \) on the interval \(0 \leq x \leq 1\). If \(h \) is the step size in \(x \) between table rows, what is an appropriate number of table rows so that linear interpolation will give an absolute error at most \(0.5 \times 10^{-3}\)? Recall that the error formula for a linear interpolating polynomial \(P(x) \) is

\[
|f(x) - P(x)| \leq \frac{Mh^2}{8}, \quad \text{where} \quad M = \max_{\xi \in [0,1]} |f''(\xi)|.
\]

Question 5 (8 marks)

(a) [3 marks] Using Taylor series expansions derive the \(O(h^2) \) central difference approximation

\[
f'(x) = \frac{f(x+h) - f(x-h)}{2h}
\]

(b) [5 marks] Using Richardson extrapolation and Taylor series expansions derive the \(O(h^4) \) derivative approximation

\[
f'(x) = \frac{-f(x+2h) + 8f(x+h) - 8f(x-h) + f(x-2h)}{12h}
\]
Question 6 (11 marks)
Consider the trapezoidal rule
\[\int_a^b f(x) \, dx = \frac{h}{2} [f(x_0) + f(x_1)] - \frac{h^3}{12} f''(\xi), \quad \xi \in [a, b], \]
where \(a = x_0, b = x_1, h = x_1 - x_0. \)

(a) [4 marks] Derive the composite trapezoidal rule
\[\int_a^b f(x) \, dx = T(f, h) - \frac{b-a}{12} h^2 f''(\mu), \quad \text{where} \ a \leq \mu \leq b \]
\[T(f, h) = \frac{h}{2} \left[f(a) + 2 \sum_{k=1}^{n-1} f(x_k) + f(b) \right] \]
Here \(x_0 = a, x_n = b, x_k = a + kh, \) and \(h = (b-a)/n. \)

(b) [3 marks] Evaluate the integral \(\int_0^{2/10} \frac{dx}{x+2} \) using the composite trapezoidal rule with 5 steps (subintervals).

(c) [1 mark] Use the error formula in (a) to estimate the error in your answer to (b)

(d) [1 mark] For the integral in (b), how many steps (subintervals) would be needed to obtain an absolute error less than or equal to \(0.5 \times 10^{-4}. \)

(e) [2 marks] Complete the following Romberg table to find an approximate value for the integral \(\int_0^1 \frac{4}{1+x} \, dx. \)

\[
\begin{array}{c|c|c}
R(0, 0) & 3.0000 & \\
R(1, 0) & 3.1000 & R(1, 1) = .xxxxx \\
R(2, 0) & 3.1312 & R(2, 1) = .xxxxx \quad R(2, 2) = .xxxxx \\
R(3, 0) & 3.1390 & R(3, 1) = .xxxxx \quad R(3, 2) = .xxxxx \quad R(3, 3) = .xxxxx \\
\end{array}
\]

Question 7 (12 marks)

(a) [2 marks] Write a pseudo-code version of the naive gaussian algorithm that solves the linear system \(Ax = b. \) Write only the elimination part, not the back substitution part.

(b) [2 marks] Explain some methods that try to improve on naive gaussian elimination by trying to avoid zero pivots, reduce round off error, or increase efficiency.

(c) [2 marks] Given the LU decomposition of a matrix \(A \) explain how it can be used to solve the linear system \(Ax = b \)

(d) [2 marks] For algorithms that may require row exchanges show how your answer to (c) needs to be modified.
(e) [4 marks] Find the LU decomposition of the matrix

\[A = \begin{bmatrix}
1 & 1 & 0 & 3 \\
2 & 1 & -1 & 1 \\
3 & -1 & -1 & 2 \\
-1 & 2 & 3 & -1
\end{bmatrix} \]

and use it to solve the linear system \(Ax = b \) with \(b = [8, 7, 14, -7]^T \)

Question 8 (5 marks)

Consider the following first order differential equation and initial condition

\[x'(t) = x^2 + t^2 + 1, \quad x(1) = -3, \]

where \(x'(t) \) denotes the derivative of \(x \) with respect to \(t \).

(a) [2 marks] Use Euler’s method to find an approximation to \(x(1.1) \) using a step size \(h = 0.05 \).

(b) [3 marks] Develop the 4th order Taylor series method for solving this initial value problem (keep terms to order \(h^4 \)) by calculating the \(k \)-th derivatives \(x^{(k)}, k = 1, 2, 3, 4 \). Express your answer as a pseudo-code algorithm that uses the given initial condition and calculates the solution at \(t_{\text{end}} \), given the number of steps \(n \).