Sequence spaces

Define the set of all sequences of 0’s and 1’s by
\[\Sigma_2 = \{ s = (s_0s_1s_2 \cdots) \mid s_j \in \{0, 1\} \}. \]

Then \(\Sigma_2 \) is called the sequence space on two symbols. Sequence spaces on \(N \) symbols can be defined similarly. As examples consider

\[s = (1011011) \quad (\text{finite}) \]
\[t = (11011100 \cdots) \quad (s_k = 0 \text{ if } k^{\text{th}} \text{ digit of } \pi \text{ is even else } s_k = 1) \]
\[\overline{(1)} = (1111 \cdots) \quad (\text{periodic}) \]
\[\overline{(10)} = (101010 \cdots) \quad (\text{periodic}) \]
\[(10111101) = (10111101101101 \cdots) \quad (\text{eventually periodic}) \]

where a bar over a finite sequence of symbols means that the sequence is repeated indefinitely. The sequence \(t \) is most likely non-terminating and not eventually periodic. We could interpret each \(s \in \Sigma_2 \) as a binary number using the correspondence

\[(s_0s_1s_2 \cdots) \rightarrow 0.s_0s_1s_2 \cdots = \frac{s_0}{2} + \frac{s_1}{2^1} + \frac{s_2}{2^2} + \cdots = \sum_{k=0}^{\infty} \frac{s_k}{2^k} \]

which maps \(\Sigma_2 \) to the interval \([0, 1] \subset \mathbb{R} \).

Making \(\Sigma_2 \) into a metric space

In order to define the closeness of one sequence to another we need to make \(\Sigma_2 \) into a metric space.

A metric on a set \(S \) is a mapping \(d : S \times S \to \mathbb{R} \) that associates a distance \(d(s, t) \), between \(s \) and \(t \), for all \(s, t \in S \) and has the properties

1. \(d(s, t) \geq 0 \)
2. \(d(s, t) = 0 \), if and only if \(s = t \)
3. \(d(r, t) \leq d(r, s) + d(s, t) \) (triangle inequality)

A space \(S \) with a metric defined on it is called a metric space.
Example

\mathbb{R} with $d(x, y) = |x - y|$ is a metric space. The proof follows from the properties of the absolute value function.

A metric for Σ_2

To make Σ_2 into a metric space define

$$d(s, t) = \sum_{i=0}^{\infty} \frac{|s_i - t_i|}{2^i}, \quad s, t \in \Sigma_2$$

which is suggested by the correspondence with binary numbers in $[0, 1]$.

To show that d is a metric we first show that d is well-defined (the sequence converges). Since $|s_i - t_i| = 0$ or 1, we have

$$d(s, t) \leq \sum_{i=0}^{\infty} \frac{1}{2^i} = 2$$

Since the geometric series converges d is well-defined. Clearly $d(s, t) \geq 0$ since it is the sum of non-negative terms. Also $d(s, t) = 0$ if and only if $s_i = t_i$ for all i, so $d(s, t) = 0$ if and only if $s = t$. Finally, using the triangle inequality for the absolute value function

$$d(r, t) = \sum_{i=0}^{\infty} \frac{|r_i - t_i|}{2^i} \leq \sum_{i=0}^{\infty} \frac{|r_i - s_i| + |s_i - t_i|}{2^i} = d(r, s) + d(s, t)$$

The closeness theorem

We can now prove a theorem on the closeness of two sequences.

Let $s, t \in \Sigma_2$ be such that $s_i = t_i$ for $i = 0, 1, \ldots, n$. This means that s and t agree in their first $n + 1$ symbols. Then $d(s, t) \leq 1/2^n$. Conversely, if $d(s, t) < 1/2^n$ then s and t agree in their first $n + 1$ digits. In other words, the more two sequences agree in their initial symbols the closer they are.

Proof

To prove the theorem let $s_i = t_i, i \leq n$. Then

$$d(s, t) = \sum_{i=n+1}^{\infty} \frac{|s_i - t_i|}{2^i} \leq \sum_{i=n+1}^{\infty} \frac{1}{2^i} = \frac{1}{2^{n+1}} \sum_{i=0}^{\infty} \frac{1}{2^i} = \frac{2}{2^{n+1}} = \frac{1}{2^n}$$

Conversely, if $s_j \neq t_j$ for some $j \leq n$ then

$$d(s, t) \geq \frac{|s_j - t_j|}{2^j} + \sum_{i=0}^{\infty} \frac{1}{2^j} \geq \frac{1}{2^j} \geq \frac{1}{2^n}$$

But we are assuming that $d(s, t) < 1/2^n$ so we must have $s_i = t_i$ for $i \leq n$.
Continuous functions on Σ_2

Let $f : \Sigma_2 \rightarrow \Sigma_2$. Then f is continuous at $s \in \Sigma_2$ if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that $d(f(s), f(t)) < \varepsilon$ for all $t \in \Sigma_2$ such that $d(s, t) < \delta$.

Continuity of the shift map

The shift map $\sigma : \Sigma_2 \rightarrow \Sigma_2$ defined by

$$\sigma(s_0s_1s_2 \cdots) = (s_1s_2s_3 \cdots)$$

is continuous everywhere.

Proof

To prove this let $\varepsilon > 0$ and $s = (s_0s_1s_2 \cdots)$ be given. Choose n such that $1/2^n < \varepsilon$ and choose $\delta = 1/2^{n+1}$. If $d(s, t) < \delta$ then $s_i = t_i$ for $i = 0, 1, \ldots, n + 1$ by the closeness theorem. Then

$$s = (a_0a_1 \cdots a_{n+1}s_{n+2} \cdots)$$

and $t = (a_0a_1 \cdots a_{n+1}t_{n+2} \cdots)$

so

$$\sigma(s) = (a_1 \cdots a_{n+1}s_{n+2} \cdots)$$

and $\sigma(t) = (a_1 \cdots a_{n+1}t_{n+2} \cdots)$

Therefore $d(\sigma(s), \sigma(t)) \leq 1/2^n < \varepsilon$.

Dynamics of the shift map

Because of the simplicity of the shift map σ it is easy to determine the periodic and eventually periodic points.

Periodic points

Let $s = (s_0s_1 \cdots s_{n-1}s_0s_1 \cdots s_{n-1} \cdots) = (s_0s_1 \cdots s_{n-1})$. Then for the n-th iterate $\sigma^n(s) = s$ so s is a period-n point. Since there are 2^n sequences $s_0s_1 \cdots s_{n-1}$ for $s_j = 0, 1$ then there are exactly 2^n period-n points for σ.

Eventually periodic points

The eventually periodic points are just periodic points with some group of arbitrary leading symbols. Every eventually periodic point has the form

$$s = (e_0e_1 \cdots e_{k-1}s_0 \cdots s_{n-1})$$

in which case the iterate $\sigma^k(s)$ is periodic.
Periodic points are dense in \(\Sigma_2 \)

Let \(\text{Per}(\sigma) \) denote the set of all periodic points for the shift map \(\sigma \). Then \(\text{Per}(\sigma) \) is dense in \(\Sigma_2 \) if we can show for each \(s \in \Sigma_2 \) that there is a sequence \(\{\tau_n\} \) of periodic points that converges to \(s \).

To prove this let \(s = (s_0s_1s_2\cdots) \in \Sigma_2 \) be arbitrary and define \(\tau_n = (s_0\cdots s_n) \). Then \(d(\tau_n, s) \leq 1/2^n \) so we have \(\lim_{n \to \infty} \tau_n = s \).

This does not mean that “most” sequences are periodic. In fact the set of periodic points is countable but the set of non-periodic points is uncountable.

Dense orbits

There is a dense orbit for \(\sigma \) in \(\Sigma_3 \). This means that there is a sequence \(s^* \in \Sigma_2 \) such that some iterate of \(s^* \) is arbitrarily close to any given \(s \in \Sigma_2 \). To construct \(s^* \) let \(\omega_j \) denote the finite sequence of all blocks of symbols of length \(j \). For example,

\[
\begin{align*}
\omega_1 & = 01 \\
\omega_2 & = 0010111 \\
\omega_3 & = 00001010110101111
\end{align*}
\]

Now put this all together to construct

\[s^* = \omega_1 \omega_2 \omega_3 \cdots \]

Then some iterate of \(s^* \) will agree with the first \(n \) symbols of any \(s \in \Sigma_2 \) for any \(n \) no matter how large.

Summary of the shift map \(\sigma \)

- \(\sigma \) is continuous.
- The cardinality of \(\text{Per}_n(\sigma) \) is \(2^n \).
- \(\text{Per}_n(\sigma) \) is dense in \(\Sigma_2 \).
- The exists a dense orbit for \(\sigma \) in \(\Sigma_2 \).